
Omni-Perception: Omnidirectional Collision
Avoidance for Legged Locomotion in Dynamic

Environments

Zifan Wang1, Teli Ma1, Yufei Jia3, Xun Yang1, Jiaming Zhou1,
Wenlong Ouyang1, Qiang Zhang1,4, Junwei Liang1,2†

1The Hong Kong University of Science and Technology (Guangzhou)
2The Hong Kong University of Science and Technology

3Department of Eletronic Engineering, Tsinghua University
4Beijing Innovation Center of Humanoid Robotics Co., Ltd.

https://github.com/aCodeDog/OmniPerception

Figure 1: Validation scenarios for the Omni-Perception framework. Effective omnidirectional collision avoid-
ance is demonstrated on the left, where the robot reacts to obstacles from various approach vectors. Robustness
against diverse environmental features is shown on the right, including successful negotiation of aerial, trans-
parent, slender, and ground obstacles. These results highlight the capacity of the Omni-Perceptio to achieve
collision-free locomotion in challenging 3D settings directly from raw LiDAR input.

Abstract: Agile locomotion in complex 3D environments requires robust spatial
awareness to safely avoid diverse obstacles such as aerial clutter, uneven terrain,
and dynamic agents. Depth-based perception approaches often struggle with sen-
sor noise, lighting variability, computational overhead from intermediate repre-
sentations (e.g., elevation maps), and difficulties with non-planar obstacles, lim-
iting performance in unstructured environments. In contrast, direct integration
of LiDAR sensing into end-to-end learning for legged locomotion remains un-
derexplored. We propose Omni-Perception, an end-to-end locomotion policy
that achieves 3D spatial awareness and omnidirectional collision avoidance by di-
rectly processing raw LiDAR point clouds. At its core is PD-RiskNet (Proximal-
Distal Risk-Aware Hierarchical Network), a novel perception module that inter-
prets spatio-temporal LiDAR data for environmental risk assessment. To facilitate
efficient policy learning, we develop a high-fidelity LiDAR simulation toolkit
with realistic noise modeling and fast raycasting, compatible with platforms such
as Isaac Gym, Genesis, and MuJoCo, enabling scalable training and effective sim-
to-real transfer. Learning reactive control policies directly from raw LiDAR data
enables the robot to navigate complex environments with static and dynamic ob-
stacles more robustly than approaches relying on intermediate maps or limited
sensing. We validate Omni-Perception through real-world experiments and ex-
tensive simulation, demonstrating strong omnidirectional avoidance capabilities
and superior locomotion performance in highly dynamic environments. We will
open-source our code and models.

https://github.com/aCodeDog/OmniPerception

Keywords: Legged Robot, Locomotion, Reinforcement Learning, Collision
Avoidance, LiDAR Perception

1 Introduction

Legged robots possess the unique potential to navigate complex, human-centric environments where
wheeled or tracked systems often fail. Unlocking their full capabilities, however, requires not only
agile locomotion but also robust perception and rapid reaction to diverse 3D surroundings [1, 2].
Achieving safe, high-speed locomotion among static and dynamic obstacles—ranging from ground
clutter and uneven terrain to overhanging structures and moving agents—requires holistic spatial
awareness and tightly coupled reactive control [3, 4]. Enabling such agile, collision-free movement
in unstructured 3D environments remains a fundamental challenge [5, 6].

Most state-of-the-art controllers operate blindly using only proprioception, limiting their ability to
handle complex terrain or unexpected obstacles [7, 8, 9, 2, 10, 11, 12]. While methods incorporating
exteroception via depth cameras [13, 14] have advanced locomotion over uneven terrain, depth-
based perception suffers from limitations such as sensitivity to lighting conditions, limited fields of
view, noise susceptibility, and the computation overhead of maintaining intermediate representations
like elevation maps [15, 16]. These representations, in turn, struggle with aerial clutter and complex
non-planar obstacles. Alternative approaches that decouple navigation planning from locomotion
control [17, 18] often lead to conservative behaviors, preventing full exploitation of a robot’s agility.

Meanwhile, LiDAR sensors have become instrumental in fields such as autonomous driving, offer-
ing dense, lighting-invariant 3D measurements [19, 20]. LiDAR delivers rich geometric information
ideal for navigating spatially complex environments. Despite its promise, the integration of Li-
DAR—especially direct point cloud processing—into end-to-end learning for legged locomotion
remains underexplored [21, 22, 23]. This gap arises from the challenges of real-time point cloud
processing within fast control loops, and from difficulties in accurately modeling LiDAR physics
for effective sim-to-real transfer [24].

This work aims to bridge this critical gap. We posit that directly leveraging raw, spatio-temporal
LiDAR point clouds within an end-to-end Reinforcement Learning (RL) policy can unlock robust
3D environmental awareness for legged robots. This enables the robot to achieve omnidirectional
collision avoidance and agile navigation without relying on handcrafted intermediate representa-
tions or restrictive decoupled planning. We introduce Omni-Perception, a novel framework cen-
tered around an end-to-end policy trained using RL in a high-fidelity LiDAR simulator. Our core
technical contribution is the Proximal-Distal Risk-Aware Hierarchical Network (PD-RiskNet), a
novel perception architecture that efficiently processes raw spatio-temporal LiDAR streams to assess
multi-level environmental risks. To enable scalable and realistic training, we also develop a high-
fidelity, cross-platform LiDAR simulation toolkit with realistic noise modeling and efficient parallel
raycasting, supporting multiple physics engines including Isaac Gym, Genesis, MuJoCo, and others.
By learning directly from 3D spatial data, Omni-Perception enables legged robots to dynamically
track velocity commands while avoiding complex, multi-axis threats (e.g., aerial obstacles, ground
traps, moving agents), pushing the boundaries of agile and safe navigation in unstructured environ-
ments.Our contributions are summarized as follows:

1. End-to-End LiDAR-Driven Locomotion Framework: We present Omni-Perception, the
first framework to achieve 3D spatial awareness for legged robots by directly processing
raw LiDAR point clouds within an end-to-end RL architecture.

2. Novel LiDAR Perception Network (PD-RiskNet): We introduce a hierarchical network
architecture specifically designed to process spatio-temporal LiDAR point clouds, differ-
entiating between proximal and distal regions to effectively quantify environmental risks
for locomotion.

2

3. High-Fidelity LiDAR Simulation Toolkit: We develop a high-performance, cross-
platform LiDAR simulation toolkit featuring realistic noise models and fast parallel ray-
casting, enabling effective zero-shot sim-to-real policy transfer.

4. Demonstration of Robust LiDAR-Driven Agility: We validate Omni-Perception through
extensive simulation and real-world experiments, demonstrating strong velocity tracking
and omnidirectional avoidance capabilities across diverse and challenging environments
containing static and dynamic 3D obstacles.

2 Related Work

2.1 Learning-Based Legged Locomotion

Reinforcement Learning (RL) has emerged as a powerful paradigm for developing sophisticated
locomotion controllers for legged robots, demonstrating remarkable agility and robustness surpass-
ing traditional model-based methods in many scenarios [9, 25, 26]. RL approaches have success-
fully generated controllers for high-speed running [8, 11] and challenging terrain traversal [27, 7].
These policies typically map proprioceptive states—and in some cases, limited exteroceptive infor-
mation—directly to joint commands.

2.2 Exteroceptive Perception for Locomotion

Incorporating environmental perception is crucial for enabling legged robots to move through un-
known or dynamic environments.

Depth-Based Perception: A significant body of work utilizes depth cameras. Many approaches
reconstruct the environment into intermediate representations like 2.5D elevation maps, for foothold
planning or policy input [28, 29]. However, elevation maps inherently struggle with non-planar
obstacles like overhangs or aerial clutter and are sensitive to sensor noise. Other works attempt to use
depth data more directly, either by learning end-to-end policies from depth images [30, 31, 13, 32]
or extracting sparse features like ray distances from depth [3]. Nevertheless, these methods inherit
the limitations of depth sensors, including sensitivity to lighting and limited range. Furthermore,
sim-to-real transfer often requires extensive domain randomization, particularly noise injection into
depth data, to address real-world sensor characteristics [31].

LiDAR-Based Perception: LiDAR sensors provide direct 3D measurements and are largely invari-
ant to lighting conditions, making them fundamental in domains such as autonomous driving and
mobile robot mapping [33, 34, 35]. However, their application within learning-based, end-to-end
legged locomotion has been very limited. Existing uses often involve traditional pipelines (SLAM,
path planning) rather than direct integration into RL policies[24, 21, 36]. Challenges include the
high dimensionality and unstructured nature of point clouds, the computational cost of processing
them at high control frequencies, and the difficulty of creating accurate, efficient LiDAR simulations
for training [37, 38]. Although some works use simulated LiDAR-like inputs (e.g., ray casting) for
perception [3], to the best of our knowledge, Omni-Perception is the first framework to directly
learn end-to-end locomotion policies from raw spatio-temporal LiDAR point clouds, enabling
robust omnidirectional collision avoidance and navigation.

2.3 Collision Avoidance for Mobile Robots

Collision avoidance is a fundamental problem in robotics[39]. Classical approaches often rely on ge-
ometric methods and explicit planning in configuration space [40, 41, 42]. Model Predictive Control
(MPC) has been applied to legged robots, incorporating collision constraints into the optimization
[43, 44]. However, MPC relies on accurate dynamic models, are computationally demanding, and
tend to produce slow movements to ensure constraint satisfaction [45, 46].

Learning-based methods, particularly RL, offer an alternative by enabling robots to learn reactive
avoidance behaviors[3, 47]. In aerial robotics, RL has been successfully applied to dynamic navi-

3

gation tasks using perception inputs from RGB-D cameras or simulated laser scans [48]. Our work
advances this line by introducing an end-to-end RL-based collision avoidance strategy that leverages
rich 3D information directly from raw LiDAR streams, processed by our specialized PD-RiskNet,
integrated tightly within the locomotion control policy.

3 Method

3.1 Problem Formulation

We address the problem of learning a continuous locomotion policy π for a legged robot, enabling
it to track desired velocity commands while performing omnidirectional obstacle avoidance in com-
plex 3D environments using onboard sensing. The policy is trained end-to-end using RL within a
high-fidelity simulation environment featuring realistic LiDAR sensing.

The core task is to learn a policy π : O → ∆(A) that maps observations ot ∈ O to a distribution over
actions at ∈ A at each time step t. The observation space O comprises the information available to
the policy at time t. It includes:

• Proprioceptive State (oprop
t): A history of Nhist kinematic information, including joint

positions (qt), joint velocities (q̇t), base linear and angular velocities (vt, ωt), and base
orientation represented by the projected gravity gt.

• Exteroceptive State (Pt): A history of Nhist raw 3D point cloud data, providing spatio-
temporal information about the surrounding environment.

• Task Command (ct): The desired velocity command, typically a target linear velocity vcmd
t

and angular velocity ωcmd
t in the robot’s base frame.

Thus, the observation is ot = (oprop
t−Nhist+1:t, Pt−Nhist+1:t, ct). Our proposed perception network,

PD-RiskNet (Sec. 3.3.1), processes the sequence of point clouds Pt−Nhist+1:t and integrates the
extracted features with the proprioceptive history oprop

t−Nhist+1:t and command ct to inform the policy.

The action space A consists of low-level motor commands at, specifically the target joint positions
issued to the robot’s actuators. We frame the learning problem as optimizing the policy within an
infinite-horizon discounted Markov Decision Process (MDP), defined by the tuple (S,A, r, γ, T).
While the policy directly uses observations ot, the underlying state st ∈ S may potentially include
hidden simulator states or history. The transition dynamics T : S × A → ∆(S) are governed by
the physics simulator and sensor models. The reward function r : S × A → R (or approximated
as r(ot, at)) is designed to encourage specific behaviors (detailed in Sec. 3.3.2). The objective is to
find the optimal policy π∗ that maximizes the expected discounted sum of future rewards:

π∗ = argmax
π

Eτ∼π

[∞∑
t=0

γtr(st, at)

]
, (1)

where τ = (s0, a0, s1, a1, . . .) is a trajectory generated under policy π, at ∼ π(ot), and γ ∈ [0, 1)
is the discount factor.

3.2 Custom LiDAR Rendering Framework

Motivation and Backend. While existing simulators, like NVIDIA Isaac Gym/Sim [49],
Gazebo [50], Genesis [51], provide physics simulation capabilities, their rendering solutions of-
ten lack support for diverse lidar sensor models like Non-repetitive scan lidar or impose limitations
on parallelism and cross-platform execution. To address these gaps, inspired by [52], we introduce a
custom, high-performance LiDAR rendering framework that leverages NVIDIA Warp [53] for GPU
acceleration and Taichi [54] for cross-platform compatibility, enabling execution on systems lacking
dedicated NVIDIA GPUs, including CPU-only environments.

4

Optimized Mesh Management for Parallel Simulations. Simulating numerous environments
with frequently moving dynamic objects poses a significant challenge. Transforming each mesh and
rebuilding acceleration structures (BVHs) for each environment independently at each timestep [55]
become computationally prohibitive in such scenarios. To overcome this bottleneck, we employ a
specialized mesh partitioning and update strategy:

• Per-Environment Static Mesh: For each environment Ei, non-moving geometry (terrain,
fixed obstacles) is represented as a static mesh Mstatic

i . Its BVH structure is built only once
upon initialization, minimizing redundant computations.

• Global Shared Dynamic Mesh: We aggregate the meshes of all dynamic entities (e.g.,
robot parts, moving obstacles) from all Nenvs parallel environments into a single, global
dynamic mesh Mdynamic

global,t . At simulation time t, only the vertex positions of this shared
mesh are updated based on the latest transformations (Tj,t) of the corresponding dynamic
objects Mdynamic

j across all environments.

Synchronous Update and Raycasting. LiDAR simulation involves raycasting against both the
appropriate static mesh (Mstatic

i) and the single global dynamic mesh (Mdynamic
global,t). Crucially, the

vertex update for Mdynamic
global,t occurs synchronously for all environments, typically matching the sen-

sor’s update frequency. This centralized update mechanism avoids the substantial overhead of in-
dividually updating dynamic meshes and rebuilding their acceleration structures for each of the
Nenvs environments at every step. This enables all parallel environments to efficiently query the
same up-to-date dynamic geometry, resulting in scalable, high-performance simulation across di-
verse hardware configurations.

LiDAR Model Support and Scan Pattern Simulation Leveraging this framework, we have im-
plemented support for a wide range of commercial LiDAR models. This includes non-repetitive
scanning LiDARs, such as the Livox series (e.g., Mid-360, Avia), where we simulate their character-
istic scan patterns by utilizing real device data to determine scan angles synchronized with the sim-
ulation time t. Furthermore, support extends to conventional rotating LiDARs, with pre-configured
models including the Velodyne series (e.g., HDL-64, VLP-32) and various Ouster sensors.

3.3 Omni-Perception Framework

Our framework, shown in Figure 2, consists of the PD-RiskNet for processing LiDAR data and a
locomotion policy that integrates this perception with proprioception and commands.

3.3.1 PD-RiskNet: Processing Spatio-Temporal Point Clouds

The PD-RiskNet architecture is designed to process spatio-temporal point cloud data acquired from
a legged robot’s LiDAR sensor. The initial step involves partitioning the raw point cloud Praw

into two distinct subsets: the proximal point cloud Pproximal and the distal point cloud Pdistal.
This partitioning is based on a vertical angle threshold θ, distinguishing near-field points (higher
θ) from far-field points (lower θ), effectively separating dense local geometry from sparse distant
observations.

Proximal Point Cloud Processing: Pproximal, representing the near-field environment, is gener-
ally characterized by higher point density and relatively smaller variations in range. To efficiently
process this dense data while preserving crucial local geometric details, Farthest Point Sampling
(FPS)[56] is employed to obtain a sparse yet representative subset of points. Following sampling,
these points are structured by sorting based on their spherical coordinates (θ then ϕ). This ordered
representation of the sampled Proximal point cloud is then input to a dedicated Gated Recurrent Unit
(GRU). The feature extraction capability of this GRU is enhanced during training using a Privileged
Height signal as supervision, guiding the network to learn representations specifically pertinent to
local terrain properties and potential risks for legged locomotion.

5

PD-RiskNetPoint Cloud History Sim Training

Deployment

Privileged Height

GRU

GRU

Proprioception History
Wrapper

A
ct

or

(M
LP

)

A
ct

u
at

or

N
et

Command

Embeddings

Distal

Proximal

Average
downsampling

Farthest point
sampling

(a) (b)

Supervised

Figure 2: Proposed System Framework. (a) Visualization of differing sensor coverage: the typically narrow,
forward-directed field of view of a depth camera (top) contrasted with the broader and longer range, coverage of
a LiDAR sensor (bottom), shown on the Unitree Go2 robot. (b) Detailed diagram of the perception and control
pipeline. Raw point cloud history is processed via two pathways within PD-RiskNet (average downsampling
for distal features, farthest point sampling for proximal features, each fed to a GRU) generating spatial embed-
dings. In the point cloud history visualization, the dense blue points represent the proximal point cloud, while
the sparse red points depict the distal point cloud. These embeddings are concatenated with historical propri-
oception and commands processed by a History Wrapper, and supervised using privileged height information.
The combined features are input to an Actor (MLP) network that outputs actuator targets for sim-to-real train-
ing and deployment.

Distal Point Cloud Processing: Conversely, Pdistal, covering the far-field environment, is typically
sparse and exhibits larger variations in range values. To handle the data characteristics and reduce the
influence of outliers in this sparse data, Average Downsampling is applied. This operation yields a
more uniform representation of distant structures. Downsampled distal point clouds from the current
and preceding Nhist frames are combined, forming a spatio-temporal sequence. This sequence,
structured by sorting points based on their spherical coordinates (θ then ϕ) after downsampling,
is processed by a separate GRU module to extract features capturing the dynamic environmental
context at range.

3.3.2 Risk-Aware Locomotion Policy

The locomotion policy is implemented as an MLP that takes the concatenated features from PD-
RiskNet and the proprioceptive history as input.

Observation Space. As detailed in Sec. 3.1, the observation includes proprioceptive history
(oprop

t−Nhist+1:t), processed LiDAR features from PD-RiskNet (fPD
t) derived from Pt−Nhist+1:t,

and the current velocity command (ct). Hence, the policy input is represented as opolicyt =
(oprop

t−Nhist+1:t, f
PD
t , ct).

Action Space. The policy outputs target joint positions at for a low-level PD controller.

Reward Function. The reward function rt = r(st, at) is designed to train the robot to fol-
low velocity commands while actively avoiding collisions by leveraging LiDAR data. We use
a similar reward function as [13]. A complete list of reward functions can be found in Ap-
pendix. 5. It primarily consists of two novel components focused on velocity tracking with
integrated avoidance and maximizing environmental clearance: (1) Linear Velocity Tracking
with Avoidance (rvel avoid): This encourages tracking a modified target linear velocity that
combines the external command vcmd

t with a dynamically computed avoidance velocity V avoid
t .

Figure 3: The calculation of the sector-
based avoidance velocity.

The avoidance velocity V avoid
t actively pushes the robot

away from nearby obstacles detected by LiDAR. The
robot’s 360° horizontal surroundings are divided into
Nsec = 36 angular sectors. Within each sector j, the
minimum obstacle distance djt is found. If djt is below a
threshold dthresh (e.g., 1m), an avoidance velocity com-
ponent V avoid

t,j is generated, pointing away from the sector

6

j. Its magnitude is calculated based on proximity:

∥V avoid
t,j ∥ = exp(−dj,t · αavoid)

The total avoidance velocity V avoid
t =

∑Nsec

j=1 V avoid
t,j is

the vector sum over all sectors. The reward term penalizes
deviation from this combined target velocity:

rvel avoid = exp(−βva ∗ ∥vt − (vcmd
t + Vavoid,t)∥2)

where vt is the base linear velocity, and βva is weighting coefficients. (2) Distance Maximization
(rrays): This reward encourages maintaining a safety margin and pushing towards open areas by
maximizing the capped LiDAR ray distances. Using the capped distances d̂t,i = min(dt,i, dmax)
from n representative distal LiDAR rays, the reward is:

rrays =

n∑
i=1

d̂t,i
n · dmax

Domain Randomization. This was applied during training to enhance sim-to-real transfer. This
included randomizing robot physical parameters [7] and LiDAR perception characteristics (masking,
noise). See Appendix 7 for details.

4 Experiments

4.1 LiDAR fidelity Evaluation

As illustrated in Figure. 4, we validate our LiDAR simulator’s fidelity. We compare its output to
real data from a Unitree G1 robot using a Livox Mid-360 sensor and Isaac Sim LiDAR using the
same horizontal angle and vertical angle. Our simulation includes the sensor’s non-repetitive scan
pattern and robot self-occlusion. The simulated and real point distributions and structures appeared
similar. This result indicates high simulator fidelity, which helps reduce the sim2real perception gap
for LiDAR policies.You can find more lidar model scan patterns in the Appendix.F

(a) (b) (c) (d)

Figure 4: Comparison of simulated and real point cloud for the Unitree G1 robot. (a) The physical Unitree
G1 robot setup. (b) Real-world LiDAR scan captured by the onboard Livox Mid-360 sensor. (c) (Ours) Point
cloud generated using our Livox Mid-360 sensor model within the Isaac Gym. (d) Point cloud using the official
sensor within the Isaac Sim. Ours captures the self-occlusion effect as in the real-world LiDAR.

.

Table 1: Rendering time (ms) for static scenes across configurations. Ours is much more efficient than Isaac
Sim.

Lines
Number of Environments

256 512 1024 2048 4096

Ours IsaacSim Ours IsaacSim Ours IsaacSim Ours IsaacSim Ours IsaacSim

1k 2.5±0.3 21±0.7 2.1±0.4 19±1.7 2.2±0.1 32±0.8 3.4±0.2 40±1.8 3.3±0.3 95±2.1

4k 3.3±0.4 28±0.6 5.7±0.3 39±0.3 16.2±1.1 81±1.1 49.9±2.3 146±4.8 117.9±0.7 308±5.8

16k 3.7±0.1 81±3.1 11.2±0.8 142±1.4 30.4±2.8 317±17.3 118.3±4.7 600±8.8 220.0±1.1 OOM
32k 5.8±0.1 148±2.3 22.9±2.6 286±2.7 47.9±0.8 569±14.9 133.5±8.4 1133±32.3 273.0±0.9 OOM

4.2 Comparison with Existing Simulators and Efficiency Analysis

While numerous robotics simulators exist, official support for LiDAR simulation is relatively

7

Table 2: Comparison of Capabilities Across Platforms.

LiDAR Simulation Feature Ours Isaac Sim Gazebo
Rotating LiDAR Support ✓ ✓ ✓
Solid-State LiDAR Support ✓ ✓ ✓
Hybrid Solid-State LiDAR ✓ × ✓

(Non-repetitive scan)
Static Irregular Objects ✓ ✓ ✓
Dynamic Irregular Objects ✓ × ×
Self-Occlusion ✓ × ×
Cross-Platform Support ✓ × ✓
Massively Parallel Execution ✓ ✓ ×

limited, with Gazebo and NVIDIA
Isaac Sim being prominent exam-
ples offering built-in capabilities. We
compare our LiDAR toolkit features
against these established platforms
based on our evaluation and publicly
available documentation. Table 2
summarizes the key LiDAR simu-
lation capabilities across these plat-
forms. Table 1 shows the rendering speed of our liDAR implementation relative to Isaac Sim. Our
implementation aims to combine broad feature support with a high-performance parallel execution
environment, like Isaac Gym and Genesis.You can find more detail in the Appendix. E.

4.3 PD-RiskNet Ablation Study

We have tested four ways to process the LiDAR point cloud to see if our PD-RiskNet is effective.

Table 3: PD-RiskNet Ablation Results (30 Trials)

Method Success Rate (%) Collision Rate (%)
Direct MLP OOM* OOM*
FPS + MLP 33.3% 93.3%
FPS + GRU 30.0% 70.0%

Ours 76.7% 56.7%

We compare four approaches for extracting the
same dimensional point cloud features in an
Isaac Gym simulation with 6 dynamic obsta-
cles (1.5 m/s speed) over 30 trials each. As
shown in Fig. 6, the task is to reach the end
of a 12m x 4m area. Table. 3 shows the di-
rect method using an MLP failed due to Out
of Memory(OOM) (24GB). Methods using FPS
downsampling, FPS+MLP, and FPS+GRU suffer very low success rates, mostly failing due to time-
outs or getting stuck rather than colliding.

4.4 Real-World Deployment

We evaluate the omnidirectional obstacle avoidance effectiveness and its reactive behaviors in var-
ious scenarios, as shown in Fig. 1. Furthermore, we test its performance under several extreme
conditions. As depicted in Fig. 5, the robot successfully crosses through rocky terrain within dense
grass, even while experiencing interference from moving humans. It also demonstrates adaptability
to rapidly approaching aerial obstacles and frequent human obstructions. A quantitative comparison
of success rates against the native Unitree system across different obstacle types over 30 trials is
presented in Table 4.

灣 通 炫

Figure 5: Robot obstacle avoidance performance
was assessed in varied scenarios, including complex
terrain and dynamic human interference.

Goal

Figure 6: Simulation ablation experiment scene set-
ting.

Scenario Omni-Perception Unitree System
Static obstacles 30/30 (100%) 30/30 (100%)
Aerial obstacles 21/30 (70%) 0/30 (0%)
Small obstacles 25/30 (83%) 30/30 (100%)
Moving humans 27/30 (90%) 0/30 (0%)

Table 4: Real-world performance comparison be-
tween Omni-Perception and the native Unitree sys-
tem. Success rates are reported based on 30 trials for
each scenario involving different types of obstacles.
Bold values indicate the higher success rate for that
scenario.

8

5 Conclusion

In conclusion, we present Omni-Perception, an end-to-end reinforcement learning framework that
successfully enables robust, omnidirectional collision avoidance for legged robots by directly lever-
aging raw LiDAR point cloud data. Through PD-RiskNet architecture and training in a high-fidelity
lidar simulation environment, our approach integrates perception and control, allowing robots to
move in complex environments with diverse static and dynamic obstacles while maintaining desired
velocity commands. Real-world experiments validated the system’s ability to perform agile and safe
locomotion in challenging, dynamic 3D settings.

9

6 Limitations

Environmental Geometry: Performance can degrade in environments dominated by highly un-
structured vegetation, such as dense grass, where LiDAR struggles to extract reliable geometric fea-
tures essential for locomotion. This poses a challenge similar to sensor limitations noted in visually
complex scenes.Introducing semantic segmentation into the framework is a potential solution.

Sim2Real Fidelity Trade-off: the current approach utilizes sampling strategies within a high-
fidelity simulator to facilitate sim-to-real transfer. While effective, this involves an inherent trade-off,
potentially reducing the level of fine-grained geometric detail perceived by the robot compared to
the raw sensor output. This simplification might become a limiting factor in scenarios demanding
exceptionally precise navigation around complex small obstacles, potentially leading to subopti-
mal paths or collisions. Further research could focus on improving simulation fidelity, developing
more advanced domain randomization or adaptation techniques, or incorporating online learning to
fine-tune perception upon deployment.

6.1 Failure Case

extremely unstructured environments: Although we have successful examples in this environ-
ment, the effectiveness of the robot’s locomotion strategy will be greatly reduced. The robot iden-
tified the grass on the left side of the picture as a dangerous obstacle, and because it was close, it
quickly moved to the left.

Figure 7: dense grass.

Because the entire passage was narrow, the robot was forced to enter the grass on the right side of
the picture. After entering the grass, the robot’s surroundings were perceived as a dangerous area,
which led to mission failure.

Objects that are too small and sparse:

Figure 8: Thin rod.

Since we will average the distant point clouds, the fea-
tures of very small objects will be destroyed, making it
impossible to respond correctly to such obstacles.

10

Acknowledgments

If a paper is accepted, the final camera-ready version will (and probably should) include acknowl-
edgments. All acknowledgments go at the end of the paper, including thanks to reviewers who gave
useful comments, to colleagues who contributed to the ideas, and to funding agencies and corporate
sponsors that provided financial support.

References
[1] A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer, 22

(6):46–57, 1989.

[2] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

[3] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi. Agile but safe: Learning collision-free
high-speed legged locomotion. In Robotics: Science and Systems (RSS), 2024.

[4] Z. Xu, B. Chen, X. Zhan, Y. Xiu, C. Suzuki, and K. Shimada. A vision-based autonomous uav
inspection framework for unknown tunnel construction sites with dynamic obstacles. IEEE
Robotics and Automation Letters, 8(8):4983–4990, 2023.

[5] D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and S. Kim. Vision aided dy-
namic exploration of unstructured terrain with a small-scale quadruped robot. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 2464–2470, 2020. doi:
10.1109/ICRA40945.2020.9196777.

[6] T. Dudzik, M. Chignoli, G. Bledt, B. Lim, A. Miller, D. Kim, and S. Kim. Robust autonomous
navigation of a small-scale quadruped robot in real-world environments. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3664–3671. IEEE,
2020.

[7] G. B. Margolis and P. Agrawal. Walk these ways: Tuning robot control for generalization with
multiplicity of behavior. Conference on Robot Learning, 2022.

[8] G. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via reinforce-
ment learning. In Robotics: Science and Systems, 2022.

[9] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-
ing agile and dynamic motor skills for legged robots. sci. Robotics, 4:26, 2019.

[10] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on Robot Learning, pages 91–100. PMLR,
2022.

[11] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
2021.

[12] Z. Wang, Y. Jia, L. Shi, H. Wang, H. Zhao, X. Li, J. Zhou, J. Ma, and G. Zhou. Arm-constrained
curriculum learning for loco-manipulation of a wheel-legged robot. In 2024 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 10770–10776, 2024.
doi:10.1109/IROS58592.2024.10802062.

[13] X. Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme parkour with legged robots. In 2024
IEEE International Conference on Robotics and Automation (ICRA), pages 11443–11450.
IEEE, 2024.

[14] S. Kareer, N. Yokoyama, D. Batra, S. Ha, and J. Truong. Vinl: Visual navigation and loco-
motion over obstacles. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 2018–2024. IEEE, 2023.

11

http://dx.doi.org/10.1109/ICRA40945.2020.9196777
http://dx.doi.org/10.1109/ICRA40945.2020.9196777
http://dx.doi.org/10.1109/IROS58592.2024.10802062

[15] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains
using egocentric vision. In Conference on robot learning, pages 403–415. PMLR, 2023.

[16] C. Plagemann, S. Mischke, S. Prentice, K. Kersting, N. Roy, and W. Burgard. Learning predic-
tive terrain models for legged robot locomotion. In 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3545–3552. IEEE, 2008.

[17] A.-C. Cheng, Y. Ji, Z. Yang, Z. Gongye, X. Zou, J. Kautz, E. Bıyık, H. Yin, S. Liu, and
X. Wang. Navila: Legged robot vision-language-action model for navigation. arXiv preprint
arXiv:2412.04453, 2024.

[18] T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, and M. Hutter. Elevation map-
ping for locomotion and navigation using gpu. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2273–2280. IEEE, 2022.

[19] Y. Li and J. Ibanez-Guzman. Lidar for autonomous driving: The principles, challenges, and
trends for automotive lidar and perception systems. IEEE Signal Processing Magazine, 37(4):
50–61, 2020.

[20] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and J. Li. Deep learning for lidar
point clouds in autonomous driving: A review. IEEE Transactions on Neural Networks and
Learning Systems, 32(8):3412–3432, 2020.

[21] C. D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holtmann, F. Günther, M. Tranzatto,
P. Fankhauser, and M. Hutter. Advances in real-world applications for legged robots. Journal
of Field Robotics, 35(8):1311–1326, 2018.

[22] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat, C. Cadena, M. Hutter,
A. Ijspeert, D. Floreano, et al. The current state and future outlook of rescue robotics. Journal
of Field Robotics, 36(7):1171–1191, 2019.

[23] N. Rudin, D. Hoeller, M. Bjelonic, and M. Hutter. Advanced skills by learning locomotion and
local navigation end-to-end. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2497–2503. IEEE, 2022.

[24] D. Wisth, M. Camurri, and M. Fallon. Vilens: Visual, inertial, lidar, and leg odometry for
all-terrain legged robots. IEEE Transactions on Robotics, 39(1):309–326, 2022.

[25] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and
A. Anandkumar. Eureka: Human-level reward design via coding large language models. arXiv
preprint arXiv:2310.12931, 2023.

[26] M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell, C. G. Atkeson, and J. Kuffner.
Optimization and learning for rough terrain legged locomotion. The International Journal of
Robotics Research, 30(2):175–191, 2011.

[27] S. Choi, G. Ji, J. Park, H. Kim, J. Mun, J. H. Lee, and J. Hwangbo. Learning quadrupedal
locomotion on deformable terrain. Science Robotics, 8(74):eade2256, 2023.

[28] D. Hoeller, N. Rudin, D. Sako, and M. Hutter. Anymal parkour: Learning agile navigation for
quadrupedal robots. Science Robotics, 9(88):eadi7566, 2024.

[29] J. Lee, M. Bjelonic, A. Reske, L. Wellhausen, T. Miki, and M. Hutter. Learning robust au-
tonomous navigation and locomotion for wheeled-legged robots. Science Robotics, 9(89):
eadi9641, 2024.

[30] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour
learning. arXiv preprint arXiv:2309.05665, 2023.

12

[31] Z. Zhuang, S. Yao, and H. Zhao. Humanoid parkour learning. arXiv preprint
arXiv:2406.10759, 2024.

[32] E. Chane-Sane, J. Amigo, T. Flayols, L. Righetti, and N. Mansard. Soloparkour: Constrained
reinforcement learning for visual locomotion from privileged experience. In Conference on
Robot Learning (CoRL), 2024.

[33] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust percep-
tive locomotion for quadrupedal robots in the wild. Science robotics, 7(62):eabk2822, 2022.

[34] D. Hoeller, L. Wellhausen, F. Farshidian, and M. Hutter. Learning a state representation and
navigation in cluttered and dynamic environments. IEEE Robotics and Automation Letters, 6
(3):5081–5088, 2021.

[35] Y. F. Chen, M. Liu, M. Everett, and J. P. How. Decentralized non-communicating multiagent
collision avoidance with deep reinforcement learning. In 2017 IEEE international conference
on robotics and automation (ICRA), pages 285–292. IEEE, 2017.

[36] P. Arm, G. Waibel, J. Preisig, T. Tuna, R. Zhou, V. Bickel, G. Ligeza, T. Miki, F. Kehl, H. Kol-
venbach, et al. Scientific exploration of challenging planetary analog environments with a team
of legged robots. Science robotics, 8(80):eade9548, 2023.

[37] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart, and M. Hutter. Navigation
planning for legged robots in challenging terrain. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1184–1189. IEEE, 2016.

[38] H. Yin, X. Xu, S. Lu, X. Chen, R. Xiong, S. Shen, C. Stachniss, and Y. Wang. A survey on
global lidar localization: Challenges, advances and open problems. International Journal of
Computer Vision, 132(8):3139–3171, 2024.

[39] S. Haddadin, A. De Luca, and A. Albu-Schäffer. Robot collisions: A survey on detection,
isolation, and identification. IEEE Transactions on Robotics, 33(6):1292–1312, 2017.

[40] M. Gaertner, M. Bjelonic, F. Farshidian, and M. Hutter. Collision-free mpc for legged robots
in static and dynamic scenes. In 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 8266–8272. IEEE, 2021.

[41] J.-W. Park, H.-D. Oh, and M.-J. Tahk. Uav collision avoidance based on geometric approach.
In 2008 SICE Annual Conference, pages 2122–2126. IEEE, 2008.

[42] M. Lin and S. Gottschalk. Collision detection between geometric models: A survey. In Proc.
of IMA conference on mathematics of surfaces, volume 1, pages 602–608, 1998.

[43] J.-R. Chiu, J.-P. Sleiman, M. Mittal, F. Farshidian, and M. Hutter. A collision-free mpc
for whole-body dynamic locomotion and manipulation. In 2022 international conference on
robotics and automation (ICRA), pages 4686–4693. IEEE, 2022.

[44] B. Lindqvist, S. S. Mansouri, A.-a. Agha-mohammadi, and G. Nikolakopoulos. Nonlinear
mpc for collision avoidance and control of uavs with dynamic obstacles. IEEE robotics and
automation letters, 5(4):6001–6008, 2020.

[45] Q. Liao, Z. Li, A. Thirugnanam, J. Zeng, and K. Sreenath. Walking in narrow spaces: Safety-
critical locomotion control for quadrupedal robots with duality-based optimization, 2023. URL
https://arxiv.org/abs/2212.14199.

[46] M. Koptev, N. Figueroa, and A. Billard. Reactive collision-free motion generation in joint
space via dynamical systems and sampling-based mpc. The International Journal of Robotics
Research, 43(13):2049–2069, 2024.

13

https://arxiv.org/abs/2212.14199

[47] Z. Xu, X. Han, H. Shen, H. Jin, and K. Shimada. Navrl: Learning safe flight in dynamic
environments. IEEE Robotics and Automation Letters, 10(4):3668–3675, 2025. doi:10.1109/
LRA.2025.3546069.

[48] Y. Song, K. Shi, R. Penicka, and D. Scaramuzza. Learning perception-aware agile flight in
cluttered environments, 2022. URL https://arxiv.org/abs/2210.01841.

[49] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simula-
tion for robot learning, 2021.

[50] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-robot
simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154 vol.3, 2004. doi:10.1109/
IROS.2004.1389727.

[51] G. Authors. Genesis: A universal and generative physics engine for robotics and beyond,
December 2024. URL https://github.com/Genesis-Embodied-AI/Genesis.

[52] M. Kulkarni, W. Rehberg, and K. Alexis. Aerial gym simulator: A framework for highly
parallelized simulation of aerial robots. IEEE Robotics and Automation Letters, 2025.

[53] M. Macklin. Warp: A high-performance python framework for gpu simulation and graphics.
https://github.com/nvidia/warp, March 2022. NVIDIA GPU Technology Conference
(GTC).

[54] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand. Taichi: a language for high-
performance computation on spatially sparse data structures. ACM Transactions on Graphics
(TOG), 38(6):201, 2019.

[55] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast bvh construction
on gpus. In Computer Graphics Forum, volume 28, pages 375–384. Wiley Online Library,
2009.

[56] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. arXiv preprint arXiv:1706.02413, 2017.

[57] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

14

http://dx.doi.org/10.1109/LRA.2025.3546069
http://dx.doi.org/10.1109/LRA.2025.3546069
https://arxiv.org/abs/2210.01841
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1109/IROS.2004.1389727
https://github.com/Genesis-Embodied-AI/Genesis
https://github.com/nvidia/warp

A Implementation Details

A.1 Rewards

Term Equation Weight

Omni-Perception Rewards
Velocity Tracking with Avoidance (rvel,avoid) exp{−βva||vt − (vcmd

t + Vavoid,t)||2} 2

Distance Maximization (rrays)
∑n

i=1

min(dt,i,dmax)

n·dmax
1.5

Auxiliary Rewards
z velocity v2

z −3 × 10−4

foot stumble ||Forcefoot
xy ||

2 −2 × 10−2

link collision ||ForcePenltyLink
xy ||2 −0.02

joint limit violation 1qi>qmax||qi<qmin
−0.2

joint torques ||τ ||2 −1 × 10−6

joint velocities ||q̇||2 −1 × 10−6

joint accelerations ||q̈||2 −2.5 × 10−7

action smoothing ||at−1 − at||2 −5 × 10−3

action smoothing rate ||at−2 − 2at−1 + at||2 −5 × 10−3

Table 5: Reward structure for Omni-Perception

B Network Architecture Details

The Omni-Perception framework utilizes specific neural network architectures for perception (PD-
RiskNet) and control (Actor).

B.1 PD-RiskNet Architecture

The PD-RiskNet processes spatio-temporal LiDAR point cloud data. As described in Section 3.3.1
of the main text, the raw point cloud is partitioned into proximal (Pproximal) and distal (Pdistal) subsets.

• Input Processing: Both the proximal and distal pathways process a history of point cloud
data. The paper mentions using a history of Nhist frames (Sec 3.1, Sec 3.3.1). Based on
additional details provided, we use Nhist = 10, meaning each Gated Recurrent Unit (GRU)
processes features derived from 10 consecutive LiDAR scans.

• Proximal Pathway: The proximal point cloud (Pproximal) undergoes Farthest Point Sam-
pling (FPS) before being fed into a dedicated GRU. This GRU is supervised using privi-
leged height information during training. The output embedding dimension from the prox-
imal GRU is 187 features.

• Distal Pathway: The distal point cloud (Pdistal) is processed using Average Downsampling.
Features from the current and Nhist−1 preceding frames (forming a sequence of 10 frames)
are fed into a separate GRU. The output embedding dimension from the distal GRU is 64
features.

The embeddings from both the proximal and distal GRUs are concatenated with proprioceptive
history and the command vector before being passed to the Actor network.

B.2 Actor Network Architecture

The locomotion policy (Actor) is implemented as a Multi-Layer Perceptron (MLP).

• Input: Concatenated features from PD-RiskNet (187 + 64 features), processed propriocep-
tive history, and the current velocity command.

15

• Hidden Layers: The MLP consists of sequential fully connected layers with the follow-
ing hidden dimensions: [1024, 512, 256, 128]. Appropriate activation functions ELU are
typically used between layers.

• Output Layer: The final layer outputs the target joint positions for the robot’s actuators.
The output dimension is 12.

C PPO Hyperparameters

The policy was trained using the Proximal Policy Optimization (PPO) algorithm [57]. Key hyper-
parameters used during training are listed in Table 6.

Table 6: PPO Hyperparameters
Parameter Value

PPO clip parameter (ϵ) 0.2
GAE λ 0.95
Reward discount factor (γ) 0.99
Learning rate 1× 10−3

Learning rate schedule adaptive
Value loss coefficient 1.0
Use clipped value loss True
Entropy coefficient 0.01
Desired KL divergence 0.01
Max gradient norm 1.0
Number of environments 4096
Number of env steps per batch 24
Learning epochs per batch 5
Number of mini-batches per epoch 4

D Domain Randomization Details

To improve sim-to-real transfer, we applied domain randomization to various simulation parameters
during training. We followed previous work [7] for randomizing the robot’s physical attributes. For
LiDAR perception, we introduced specific randomizations: random masks were applied to 10%
of the point cloud, assigning these points small distance values uniformly sampled from [0, 0.3].
Additionally, 10% noise was randomly added to the measured LiDAR distances.

The specific parameters and their randomization ranges are detailed in Table 7. All attributes listed
were uniformly sampled across all 4096 parallel environments during reinforcement learning.

Table 7: Parameters and Ranges for Domain Randomization
Parameter Range

Min Max

LiDAR Point Masking Ratio 10% (Values ∈ [0, 0.3])
LiDAR Distance Noise Ratio 10%
Added Mass (kg) −1.0 5.0
Payload Mass (kg) −1.0 3.0
Center of Mass x (m) −0.1 0.1
Center of Mass y (m) −0.15 0.15
Center of Mass z (m) −0.2 0.2
Ground Friction Coefficient 0.40 1.00
Ground Restitution 0.00 1.00
Motor Strength (Scale Factor) 0.8 1.2
Joint Calibration Offset (rad) −0.02 0.02
Gravity Offset (m/s2) −1.0 1.0
Proprioception Latency (s) 0.005 0.045

16

E Taichi Lidar Efficiency

We tested the performance of Taichi Version on three different computers, including a MacBook.Our
program is cross-platform like MuJoCo,Genesis,Gazebo,Isaac sim/gym.

In scenes with fewer geoms (lower 200), simulating with 115,200 rays can achieve 500Hz+ simula-
tion efficiency, which is really fast! Most of the time is spent in the preparation process, with a large
proportion (more than60%)

F Lidar Pattern

17

(a) Mid360 Pattern (b) Mid40 Pattern

(c) Mid70 Pattern (d) Avia Pattern

(e) Tele Pattern (f) HDL64 Pattern

(g) VLP32 Pattern (h) OS128 Pattern

Figure 9: Various LiDAR Scan Patterns

18

	Introduction
	Related Work
	Learning-Based Legged Locomotion
	Exteroceptive Perception for Locomotion
	Collision Avoidance for Mobile Robots

	Method
	Problem Formulation
	Custom LiDAR Rendering Framework
	Omni-Perception Framework
	PD-RiskNet: Processing Spatio-Temporal Point Clouds
	Risk-Aware Locomotion Policy

	Experiments
	LiDAR fidelity Evaluation
	Comparison with Existing Simulators and Efficiency Analysis
	PD-RiskNet Ablation Study
	Real-World Deployment

	Conclusion
	Limitations
	Failure Case

	Implementation Details
	Rewards

	Network Architecture Details
	PD-RiskNet Architecture
	Actor Network Architecture

	PPO Hyperparameters
	Domain Randomization Details
	Taichi Lidar Efficiency
	Lidar Pattern

